Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 493, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271339

RESUMO

BACKGROUND: Numerous studies have shown that gluten aggregation properties directly affect the processing quality of wheat, however, the genetic basis of gluten aggregation properties were rarely reported. RESULTS: To explore the genetic basis of gluten aggregation properties in wheat, an association population consisted with 207 wheat genotypes were constructed for evaluating nine parameters of aggregation properties on GlutoPeak across three-year planting seasons. A total of 940 significant SNPs were detected for 9 GlutoPeak parameters through genome-wide association analysis (GWAS). Finally, these SNPs were integrated to 68 non-redundant QTL distributed on 20 chromosomes and 54 QTL was assigned as pleiotropic loci which accounting for multiple parameters of gluten aggregation property. Furthermore, the peak SNPs representing 54 QTL domonstrated additive effect on all the traits. There was a significant positive correlation between the number of favorable alleles and the phenotypic values of each parameter. Peak SNPs of two novel QTL, q3AL.2 and q4DL, which contributing to both PMT (peak maximum time) and A3 (area from the first minimum to torque 15 s before the maximum torque) parameters, were selected for KASP (Kompetitive Allele Specific PCR) markers development and the KASP markers can be used for effectively evaluating the quality of gluten aggregation properties in the association population. CONCLUSION: The rapid and efficient GlutoPeak method for gluten measurement can be used for early selection of wheat breeding. This study revealed the genetic loci related to GlutoPeak parameters in association population, which would be helpful to develop wheat elite lines with improved gluten aggregation through molecular marker-assisted breeding.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Glutens/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Fenótipo
2.
PeerJ ; 10: e13625, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898941

RESUMO

Iron (Fe) is an essential micronutrient of the body. Low concentrations of bioavailable Fe in staple food result in micronutrient malnutrition. Wheat (Triticum aestivum L.) is the most important global food crop and thus has become an important source of iron for people. Breeding nutritious wheat with high grain-Fe content has become an effective means of alleviating malnutrition. Understanding the genetic basis of micronutrient concentration in wheat grains may provide useful information for breeding for high Fe varieties through marker-assisted selection (MAS). Hence, in the present study, genome-wide association studies (GWAS) were conducted for grain Fe. An association panel of 207 accessions was genotyped using a 660K SNP array and phenotyped for grain Fe content at three locations. The genotypic and phenotypic data obtained thus were used for GWAS. A total of 911 SNPs were significantly associated with grain Fe concentrations. These SNPs were distributed on all 21 wheat chromosomes, and each SNP explained 5.79-25.31% of the phenotypic variations. Notably, the two significant SNPs (AX-108912427 and AX-94729264) not only have a more significant effect on grain Fe concentration but also have the reliability under the different environments. Furthermore, candidate genes potentially associated with grain Fe concentration were predicted, and 10 candidate genes were identified. These candidate genes were related to transport, translocation, remobilization, and accumulationof ironin wheat plants. These findings will not only help in better understanding the molecular basis of Fe accumulation in grains, but also provide elite wheat germplasms to develop Fe-rich wheat varieties through breeding.


Assuntos
Ferro , Desnutrição , Humanos , Ferro/análise , Triticum/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Reprodutibilidade dos Testes , Melhoramento Vegetal , Grão Comestível/química , Micronutrientes/análise , Desnutrição/genética
3.
BMC Plant Biol ; 22(1): 229, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508960

RESUMO

BACKGROUND: Hexaploid wheat (Triticum aestivum L.) is a leading cereal crop worldwide. Understanding the mechanism of calcium (Ca) accumulation in wheat is important to reduce the risk of human micronutrient deficiencies. However, the mechanisms of Ca accumulation in wheat grain are only partly understood. RESULTS: Here, a genome-wide association study (GWAS) was performed to dissect the genetic basis of Ca accumulation in wheat grain using an association population consisting of 207 varieties, with phenotypic data from three locations. In total, 11 non-redundant genetic loci associated with Ca concentration were identified and they explained, on average, 9.61-26.93% of the phenotypic variation. Cultivars containing more superior alleles had increased grain Ca concentrations. Notably, four non-redundant loci were mutually verified by different statistical models in at least two environments, indicating their stability across different environments. Four putative candidate genes linked to Ca accumulation were revealed from the stable genetic loci. Among them, two genes, associated with the stable genetic loci on chromosomes 4A (AX-108912427) and 3B (AX-110922471), encode the subunits of V-type Proton ATPase (TraesCS4A02G428900 and TraesCS3B02G241000), which annotated as the typical generators of a proton gradient that might be involved in Ca homeostasis in wheat grain. CONCLUSION: To identify genetic loci associated with Ca accumulation, we conducted GWAS on Ca concentrations and detected 11 genetic loci; whereas four genetic loci were stable across different environments. A genetic loci hot spot exists at the end of chromosome 4A and associated with the putative candidate gene TraesCS4A02G428900. The candidate gene TraesCS4A02G428900 encodes V-type proton ATPase subunit e and highly expressed in wheat grains, and it possibly involved in Ca accumulation. This study increases our understanding of the genetic architecture of Ca accumulation in wheat grains, which is potentially helpful for wheat Ca biofortification pyramid breeding.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Adenosina Trifosfatases/genética , Cálcio , Grão Comestível/genética , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Prótons , Locos de Características Quantitativas , Triticum/genética
4.
Front Plant Sci ; 13: 826909, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401644

RESUMO

Gliadin is a group of grain storage proteins that confers extensibility/viscosity to the dough and are vital to end-use quality in wheat. Moreover, gliadins are one of the important components for nutritional quality because they contain the nutritional unprofitable epitopes that cause chronic immune-mediated intestinal disorder in genetically susceptible individuals designated celiac disease (CD). The main genetic loci encoding the gliadins were revealed by previous studies; however, the genes related to the content of gliadins and their fractions were less elucidated. To illustrate the genetic basis of the content of gliadins and their fractions comprehensively, a recombinant inbred line (RIL) population that consisted of 196 lines was constructed from the two parents, Luozhen No.1 and Zhengyumai 9987. Quantitative trait loci (QTL) controlling the content of total gliadins and their fractions (ω-, α-, and γ-gliadin) were screened genome-widely under four environments across 2 years. Totally, thirty QTL which explained 1.97-12.83% of the phenotypic variation were detected to be distributed on 17 chromosomes and they were gathered into 12 clusters. One hundred and one pairs of epistatic QTL (E-QTL) were revealed, among which five were involved with the total gliadins and its fractions content QTL located on chromosome 1AS, 1DS, 4DS, 1DL, and 6AS. Three Kompetitive Allele-Specific PCR (KASP) markers were developed from three major QTL clusters located on chromosomes 6A, 6D, and 7D, respectively. The present research not only dissects the genetic loci for improving the content of gliadins and their three fractions, but may also contribute to marker-assisted selection of varieties with appropriate gliadin fractions content for end-use quality and health benefit at the early developmental stages and early breeding generations.

5.
J Adv Res ; 36: 163-173, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35127171

RESUMO

Introduction: Gliadins are the major components of gluten proteins with vital roles on properties of end-use wheat product and health-relate quality of wheat. However, the function and regulation mechanisms of γ-gliadin genes remain unclear. Objectives: Dissect the effect of DNA methylation in the promoter of γ-gliadin gene on its expression level and gluten strength of wheat. Methods: The prokaryotic expression and reduction-oxidation reactions were performed to identify the effect of TaGli-γ-2.1 on dough strength. Bisulfite analysis and 5-Aza-2'-deoxycytidine treatment were used to verify the regulation of TaGli-γ-2.1 expression by pTaGli-γ-2.1 methylation. The content of gluten proteins composition was measured by RP-HPLC, and the gluten strength was measured by Gluten Index and Farinograph. Results: TaGli-γ-2.1 was classified into a subgroup of γ-gliadin multigene family and was preferentially expressed in the later period of grain filling. Addition of TaGli-γ-2.1 protein fragment into strong gluten wheat flour significantly decreased the stability time. Hypermethylation of three CG loci of pTaGli-γ-2.1 conferred to lower TaGli-γ-2.1 expression. Treatment with 5-Aza-2'-deoxycytidine in seeds of strong gluten wheat varieties increased the expression levels of TaGli-γ-2.1. Furthermore, the accumulations of gliadin and γ-gliadin were significantly decreased in hypermethylated wheat varieties, corresponding with the increasing of gluten index and dough stability time. Conclusion: Epigenetic modification of pTaGli-γ-2.1 affected gluten strength by modulating the proportion of gluten proteins. Hypermethylation of pTaGli-γ-2.1 is a novel genetic resource for enhancing gluten strength in wheat quality breeding.


Assuntos
Pão , Gliadina/genética , Glutens , Pão/análise , DNA/metabolismo , Metilação de DNA , Farinha/análise , Glutens/genética , Glutens/metabolismo , Melhoramento Vegetal , Triticum/genética
6.
BMC Plant Biol ; 21(1): 523, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758752

RESUMO

BACKGROUND: Peroxidase (POD) activity plays an important role in flour-based product quality, which is mainly associated with browning and bleaching effects of flour. Here, we performed a genome-wide association study (GWAS) on POD activity using an association population consisted with 207 wheat world-wide collected varieties. Our study also provide basis for the genetic improvement of flour color-based quality in wheat. RESULTS: Twenty quantitative trait loci (QTLs) were detected associated with POD activity, explaining 5.59-12.67% of phenotypic variation. Superior alleles were positively correlated with POD activity. In addition, two SNPs were successfully developed to KASP (Kompetitive Allele-Specific PCR) markers. Two POD genes, TraesCS2B02G615700 and TraesCS2D02G583000, were aligned near the QTLs flanking genomic regions, but only TraesCS2D02G583000 displayed significant divergent expression levels (P < 0.001) between high and low POD activity varieties in the investigated association population. Therefore, it was deduced to be a candidate gene. The expression level of TraesCS2D02G583000 was assigned as a phenotype for expression GWAS (eGWAS) to screen regulatory elements. In total, 505 significant SNPs on 20 chromosomes (excluding 4D) were detected, and 9 of them located within 1 Mb interval of TraesCS2D02G583000. CONCLUSIONS: To identify genetic loci affecting POD activity in wheat grain, we conducted GWAS on POD activity and the candidate gene TraesCS2D02G583000 expression. Finally, 20 QTLs were detected for POD activity, whereas two QTLs associated SNPs were converted to KASP markers that could be used for marker-assisted breeding. Both cis- and trans-acting elements were revealed by eGWAS of TraesCS2D02G583000 expression. The present study provides genetic loci for improving POD activity across wide genetic backgrounds and largely improved the selection efficiency for breeding in wheat.


Assuntos
Genoma de Planta , Peroxidase/genética , Triticum/enzimologia , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Farinha , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Peroxidase/metabolismo , Pigmentação/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
7.
BMC Plant Biol ; 21(1): 455, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615486

RESUMO

BACKGROUND: Glutenin contents and compositions are crucial factors influencing the end-use quality of wheat. Although the composition of glutenin fractions is well known, there has been relatively little research on the genetic basis of glutenin fractions in wheat. RESULTS: To elucidate the genetic basis for the contents of glutenin and its fractions, a population comprising 196 recombinant inbred lines (RILs) was constructed from two parents, Luozhen No.1 and Zhengyumai 9987, which differ regarding their total glutenin and its fraction contents (except for the By fraction). Forty-one additive Quantitative Trait Loci (QTL) were detected in four environments over two years. These QTL explained 1.3% - 53.4% of the phenotypic variation in the examined traits. Forty-three pairs of epistatic QTL (E-QTL) were detected in the RIL population across four environments. The QTL controlling the content of total glutenin and its seven fractions were detected in clusters. Seven clusters enriched with QTL for more than three traits were identified, including a QTL cluster 6AS-3, which was revealed as a novel genetic locus for glutenin and related traits. Kompetitive Allele-Specific PCR (KASP) markers developed from the main QTL cluster 1DL-2 and the previously developed KASP marker for the QTL cluster 6AS-3 were validated as significantly associated with the target traits in the RIL population and in natural varieties. CONCLUSIONS: This study identified novel genetic loci related to glutenin and its seven fractions. Additionally, the developed KASP markers may be useful for the marker-assisted selection of varieties with high glutenin fraction content and for identifying individuals in the early developmental stages without the need for phenotyping mature plants. On the basis of the results of this study and the KASP markers described herein, breeders will be able to efficiently select wheat lines with favorable glutenin properties and develop elite lines with high glutenin subunit contents.


Assuntos
Biomarcadores , Proteínas de Armazenamento de Sementes/química , Proteínas de Armazenamento de Sementes/genética , Sementes/química , Sementes/genética , Triticum/química , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Produtos Agrícolas/química , Produtos Agrícolas/genética , Variação Genética , Genótipo , Fenótipo , Locos de Características Quantitativas
8.
Genomics ; 112(6): 4690-4700, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32818636

RESUMO

Time-dependent darkening and discoloration of wheat product caused by high polyphenol oxidase enzymes (PPO) activity is the most undesirable character in wheat processing industry. We performed GWAS of PPO activity in wheat grains utilizing an association panel and identified 22 significant SNPs. The most significant GWAS peak on chromosome 2A was verified by QTL analysis of PPO activity. The candidate gene for this GWAS peak was identified as TaPPO2A-1, which was the highest expressed PPO gene in wheat grains. The expression level of TaPPO2A-1 was significantly correlated with PPO activity. The most significant association signal for GWAS of the expression values of TaPPO2A-1 pinpointed to the genomic region containing TaPPO2A-1. The results suggested that cis regulation of TaPPO2A-1 expression is the key factor in regulation of PPO activity in wheat grains. The conclusion was further enhanced by haplotype analysis of seven SNPs in the promoter of TaPPO2A-1.


Assuntos
Catecol Oxidase/metabolismo , Proteínas de Plantas/metabolismo , Sementes/enzimologia , Triticum/genética , Catecol Oxidase/genética , Estudos de Associação Genética , Haplótipos , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/enzimologia
9.
Int J Mol Sci ; 21(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168957

RESUMO

Micronutrient deficiencies, and especially zinc (Zn) deficiency, pose serious health problems to people who mainly depend on cereal-based diets. Here, we performed a genome-wide association study (GWAS) to detect the genetic basis of the Zn accumulation in wheat (Triticum aestivum L.) grains with a diversity panel of 207 bread wheat varieties. To uncover authentic quantitative trait loci (QTL) controlling Zn accumulation, the varieties were planted in three locations. In total, 29 unique loci associated with Zn grain accumulation were identified. Notably, seven non-redundant loci located on chromosomes 1B, 3B, 3D, 4A, 5A, 5B, and 7A, were detected at least in two environments. Of these quantitative trait loci (QTL), six coincided with known QTL or genes, whereas the highest effect QTL on chromosome 3D identified in this study was not reported previously. Searches of public databases revealed that the seven identified QTL coincided with seven putative candidate genes linked to Zn accumulation. Among these seven genes, NAC domain-containing protein gene (TraesCS3D02G078500) linked with the most significant single nucleotide polymorphism (SNP) AX-94729264 on chromosome 3D was relevant to metal accumulation in wheat grains. Results of this study provide new insights into the genetic architecture of Zn accumulation in wheat grains.


Assuntos
Locos de Características Quantitativas , Triticum/genética , Zinco/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Estudo de Associação Genômica Ampla , Genótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Triticum/metabolismo
10.
Front Plant Sci ; 11: 611605, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584755

RESUMO

Bread wheat is one of the most important crops worldwide, supplying approximately one-fifth of the daily protein and the calories for human consumption. Gluten aggregation properties play important roles in determining the processing quality of wheat (Triticum aestivum L.) products. Nevertheless, the genetic basis of gluten aggregation properties has not been reported so far. In this study, a recombinant inbred line (RIL) population derived from the cross between Luozhen No. 1 and Zhengyumai 9987 was used to identify quantitative trait loci (QTL) underlying gluten aggregation properties with GlutoPeak parameters. A linkage map was constructed based on 8,518 SNPs genotyped by specific length amplified fragment sequencing (SLAF-seq). A total of 33 additive QTLs on 14 chromosomes were detected by genome-wide composite interval mapping (GCIM), four of which accounted for more than 10% of the phenotypic variation across three environments. Two major QTL clusters were identified on chromosomes 1DS and 1DL. A premature termination of codon (PTC) mutation in the candidate gene (TraesCS1D02G009900) of the QTL cluster on 1DS was detected between Luozhen No. 1 and Zhengyumai 9987, which might be responsible for the difference in gluten aggregation properties between the two varieties. Subsequently, two KASP markers were designed based on SNPs in stringent linkage with the two major QTL clusters. Results of this study provide new insights into the genetic architecture of gluten aggregation properties in wheat, which are helpful for future improvement of the processing quality in wheat breeding.

11.
Plant Cell ; 28(9): 2060-2078, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27559024

RESUMO

Chimeric genes contribute to the evolution of diverse functions in plants and animals. However, new chimeric genes also increase the risk of developmental defects. Here, we show that the chimeric gene Brassica napus male sterile 4 (Bnams4b ) is responsible for genic male sterility in the widely used canola line 7365A (Bnams3 ms3ms4bms4b ). Bnams4b originated via exon shuffling ∼4.6 million years ago. It causes defects in the normal functions of plastids and induces aborted anther formation and/or albino leaves and buds. Evidence of the age of the mutation, its tissue expression pattern, and its sublocalization indicated that it coevolved with BnaC9.Tic40 (BnaMs3). In Arabidopsis thaliana, Bnams4b results in complete male sterility that can be rescued by BnaC9.Tic40, suggesting that BnaC9.Tic40 might restore fertility through effects on protein level. Another suppressor gene, Bnams4a , rescues sterility by reducing the level of transcription of Bnams4b Our results suggest that Brassica plants have coevolved altered transcription patterns and neofunctionalization of duplicated genes that can block developmental defects resulting from detrimental chimeric genes.

12.
Plant Cell Physiol ; 57(9): 1972-84, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27388342

RESUMO

Tapetal programmed cell death (PCD) is essential in pollen grain development, and cysteine proteases are ubiquitous enzymes participating in plant PCD. Although the major papain-like cysteine proteases (PLCPs) have been investigated, the exact functions of many PLCPs are still poorly understood in PCD. Here, we identified a PLCP gene, BnaC.CP20.1, which was closely related to XP_013596648.1 from Brassica oleracea. Quantitative real-time PCR analysis revealed that BnaC.CP20.1 expression was down-regulated in male-sterile lines in oilseed rape, suggesting a connection between this gene and male sterility. BnaC.CP20.1 is especially active in the tapetum and microspores in Brassica napus from the uninucleate stage until formation of mature pollen grains during anther development. On expression of BnaC.CP20.1 prior to the tetrad stage, BnA9::BnaC.CP20.1 transgenic lines in Arabidopsis thaliana showed a male-sterile phenotype with shortened siliques containing fewer or no seeds by self-crossing. Scanning electron microscopy indicated that the reticulate exine was defective in aborted microspores. Callose degradation was delayed and microspores were not released from the tetrad in a timely fashion. Additionally, the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay indicated that BnaC.CP20.1 ectopic expression led to premature tapetal PCD. Transmission electron microscopy analyses further demonstrated that the pollen abortion was due to the absence of tectum connections to the bacula in the transgenic anthers. These findings suggest that timely expression of BnaC.CP20.1 is necessary for tapetal degeneration and pollen wall formation.


Assuntos
Arabidopsis/citologia , Arabidopsis/genética , Brassica napus/genética , Expressão Ectópica do Gene , Brassica napus/citologia , Morte Celular/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Filogenia , Infertilidade das Plantas/genética , Plantas Geneticamente Modificadas/citologia , Pólen/citologia , Pólen/genética , Pólen/crescimento & desenvolvimento , Regiões Promotoras Genéticas
13.
Plant Cell Physiol ; 57(8): 1643-56, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27335346

RESUMO

Multienzyme associations localized to specific subcellular sites are involved in several critical functions in cellular metabolism, such as plant survival and reproduction. To date, few multienzyme complexes involved in male fertility have been examined in Brassica napus Here, we reported that in B. napus, the members of a multienzyme complex work in an interaction pattern different from that in Arabidopsis thaliana for sporopollenin biosynthesis. 7365A, a male-sterile mutant with a relatively smooth anther cuticle, was found to have a dramatic reduction in both cutin monomers and wax composition. Proteomic comparison between the mutant 7365A and wild-type 7365B showed down-regulation of three sporopollenin biosynthetic enzymes, namely BnPKSA, BnPKSB and BnTKPR; these enzymes were tightly co-expressed with BnACOS5. BnPKSA and BnPKSB showed similar expression patterns but distinct accumulation levels, suggesting that they had partially distinct functions during sporopollenin biosynthesis. In vitro and in vivo analyses demonstrated that BnPKSB directly interacted with BnPKSA and BnACOS5, but no such interactions were found in the present investigation for BnTKPR1. Interestingly, the interaction between PKSA and PKSB has not been discovered in Arabidopsis, which may indicate a new interaction representing an additional efficient regulation method in B. napus Taken together, we propose that BnPKSA and BnPKSB may comprise a heterodimer combined with BnACOS5, constituting a sporopollenin metabolon in tapetal cells that is related to male reproductive development in B. napus.


Assuntos
Brassica napus/enzimologia , Regulação da Expressão Gênica de Plantas , Complexos Multienzimáticos , Proteômica , Biopolímeros/biossíntese , Biopolímeros/genética , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/ultraestrutura , Carotenoides/biossíntese , Carotenoides/genética , Regulação para Baixo , Flores/enzimologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Lipídeos de Membrana/metabolismo , Modelos Biológicos , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Multimerização Proteica
14.
J Exp Bot ; 63(5): 2041-58, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22174440

RESUMO

7365AB, a recessive genetic male sterility system, is controlled by BnMs3 in Brassica napus, which encodes a Tic40 protein required for tapetum development. However, the role of BnMs3 in rapeseed anther development is still largely unclear. In this research, cytological analysis revealed that anther development of a Bnms3 mutant has defects in the transition of the tapetum to the secretory type, callose degradation, and pollen-wall formation. A total of 76 down-regulated unigenes in the Bnms3 mutant, several of which are associated with tapetum development, callose degeneration, and pollen development, were isolated by suppression subtractive hybridization combined with a macroarray analysis. Reverse genetics was applied by means of Arabidopsis insertional mutant lines to characterize the function of these unigenes and revealed that MSR02 is only required for transport of sporopollenin precursors through the plasma membrane of the tapetum. The real-time PCR data have further verified that BnMs3 plays a primary role in tapetal differentiation by affecting the expression of a few key transcription factors, participates in tapetal degradation by modulating the expression of cysteine protease genes, and influences microspore separation by manipulating the expression of BnA6 and BnMSR66 related to callose degradation and of BnQRT1 and BnQRT3 required for the primary cell-wall degradation of the pollen mother cell. Moreover, BnMs3 takes part in pollen-wall formation by affecting the expression of a series of genes involved in biosynthesis and transport of sporopollenin precursors. All of the above results suggest that BnMs3 participates in tapetum development, microspore release, and pollen-wall formation in B. napus.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Brassica napus/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Glucanos/metabolismo , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/fisiologia , Biopolímeros/metabolismo , Brassica napus/citologia , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Carotenoides/metabolismo , Diferenciação Celular , Análise por Conglomerados , Regulação para Baixo/genética , Flores/citologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Perfilação da Expressão Gênica , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Infertilidade das Plantas , Proteínas de Plantas/genética , Pólen/citologia , Pólen/genética , Pólen/fisiologia , Alinhamento de Sequência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...